M1.		(a)	242	Units not essential	1
	(b)	Bor	nd is sh	orter or bonding pair closer to nucleus Allow CI is a smaller atom Allow fewer electron shells do not allow smaller molecules	1
		So a	attractio	on (between nucleus and) (to) bond pair is stronger Allow shared pair (or bonding electrons) held more tightly Mention of CF loses M2	1
	(c)	Net	attract	ion between the chlorine nucleus and the extra electron Allow CF ion more stable than CI	1
	(d)	(i)	step	1 Ag(s) \rightarrow Ag(g) only change 2 Ag(s) \rightarrow Ag ⁺ (g) + e ⁻ only change	1
			Step	This step can be first, second or third	1
		(ii)	127 - = 905	+ 289 + 732 + 121 – 364 5 kJ mol ⁻¹ –905 scores 1 mark only	1
	(e)	(i)	lons	can be regarded as point charges (or perfect spheres) Allow no polarisation OR only bonding is ionic OR no covalent character	

Page 2

(ii)	Greater Electronegativity argument or mention of intermolecular, CE =0	1	
	Chloride <u>ions</u> are smaller than bromide Mark independently but see above	1	
	They are attracted more strongly to the silver ions Mark independently	1	
(iii)	AgCI has covalent character Ignore reference to molecules	1	
	Forces in the lattice are stronger than pure ionic attractions Allow stronger bonding OR additional/extra bonding	1	[15]

1

 ()		1
(ii)	The negative S⁻ ion	1
	repels the added electron	1
(iii)	Step B is the atomisation enthalpy of sulphur	1
	Step D is the second ionisation enthalpy of calcium	1

(a) (i)

M2.

1s² 2s² 2p⁶ 3s² 3p⁶

	(iv)	Electrons nearer to the nucleus	1		
	Electrons removed from a positive species or more strongly attracted				
	(v)	+178 +279 +590 +1145 -200 + 539 + G + 482 = 0 G + 3013 = 0 hence G = -3013	1		
(b)	The r The c strong	model used assumes the ions are spherical and in a lattice calculated value is smaller than the cycle value or ger attraction	1 1 1		
(c)	(i)	For a reaction to occur $\Delta G < 0$ ΔS is positive and large as a gas is evolved $T\Delta S$ is larger than ΔH and ΔG is negative	1 1 1		
	(ii)	ΔS is negative Four moles gaseous reactant forming or more moles of gaseous product At high temperature T ΔS is larger than ΔH and ΔG is positive	1 1		

[18]

vis. (a) is zs zp 3s 3	МЗ.	(a)	1s ² 2s	² 2p ⁶	3s ²	Зp) 6
-------------------------------	-----	-----	--------------------	------------------------------	-----------------	----	------------

1	
T	

1

(b)	S⁻(g)	
		1

(c)	The negative S⁻ ion	1	
	repels the electron being added		

(d)	(i)	Enthalpy of atomisation of sulphur	1
	(ii)	Second ionisation enthalpy of calcium	1
	(iii)	Second electron affinity of sulphur	1

(e)	Electron more strongly attracted	1
	nearer to the nucleus or attracted by Ca+ ion	1

(f) Correct cycle

e.g. + 178 + 279 + 590 +1145 – 200 + E – 3013 + 482 = 0	1
= 539	1

Allow one mark for - 539

[11]

M4.		(a)	(i)	ΔH atomisation/sublimation of magnesium	1
		(ii)	Bond	/dissociation enthalpy of CI-CI	
			OR 2	\times <i>H</i> atomisation of chlorine	1
		(iii)	Seco	ond ionisation enthalpy of magnesium	1
		(iv)	2 × e	lectron affinity of chlorine	1
		(v)	Lattic	ce formation enthalpy of MgCl ₂	1
	(b)	Equ	ation	$2MgCl(s) \rightarrow MgCl_2(s) + Mg(s)$ State symbols not required but penalise if incorrect	1
		Cal	culatior	$\Delta H \text{ reaction} = \Sigma \Delta H_{\text{f}} \text{ products} - \Sigma \Delta H_{\text{f}} \text{ reactants}$	1
		= - (653 – (2	2 × –133)	1
		= -	427 (kJ	mol ⁻) Allow +427 to score (1) mark Other answers; award (1) for a correct ∆ H reaction expression	1
	(c)	ΔH	soln M	$gCl_2 = -\Delta H$ Lat.form. + ΔH hyd.Mg ²⁺ + 2 ΔH hyd.Cl ⁻	1
		or 0 = 25	cycle 602 – 19	920 – (2 × 364)	1
		= - 1	146 (kJ	mol⁻¹) Allow + 146 to score (1) mark Other answers; award (1) for a correct ΔH soln MgCl₂ expression/cycle	1

M5.A

[1]